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Abstract:  

The general framework of seismic risk assessment are due to the pioneering work of Cornell and 
co-workers. In nuclear engineering practice, the so-called safety factor (or separation of variables) 
approach is generally used to develop fragility curves due to its systematic applicability and the 
possibility to deal with many Structure, Systems and Components. In the recent decades, there 
have been significant advances in nuclear engineering regarding modelling and tools for dynamic 
structural and mechanical analyses. With increasing computational capabilities, it becomes now 
feasible and more and more common to develop numerical models representing complex and 
possibly nonlinear behaviour. We show how different sources of information such as expert 
judgement, numerical simulation, qualification tests and experience feedback can be combined 
in a Bayesian framework to develop best-informed fragility curves. We present an approach that 
allows for the consideration of generic fragility parameters and simulation to develop priors and 
update fragility curves using experience feedback considering both epistemic and aleatory 
uncertainty. In particular, we use a database that contains failure data collected in industrial plants 
that have experienced an earthquake. We discuss opportunities and difficulties of this approach, 
related to the lack of specific data for nuclear equipment despite growing experience feedback 
and awareness. Further advances such as vector fragility and hazard consistent definition of 
seismic load are discussed as perspectives of this work. 

Introduction 

 

The general concepts of seismic risk assessment are due to the pioneering work of Cornell and 
co-workers (Kennedy, Cornell et al.1980, EPRI 1994).  In nuclear engineering practice, the so-
called safety factor (or separation of variables) approach is generally used to develop fragility 
curves due to its systematic applicability and the possibility to deal with many SSCs (Structure, 
Systems and Components). With increasing computational capabilities, it becomes now feasible 
and more and more common to develop numerical models representing complex and possibly 
nonlinear behavior for components at stake.  

There is an opportunity to combine efforts and to progress in current practice by supporting 
simulation results with experimental data and experience feedback in the framework of Bayesian 
approaches and machine learning. 

Here, we focus on different aspects related to the numerical evaluation of fragility curves, 
including the choice of intensity measures, uncertainty propagation, reliability of numerical 
models, possible surrogates and the introduction of knowledge through expert judgement and in-
situ experience data.  

Different sources of information such as expert judgement, numerical simulation, qualification 
tests and experience feedback can be combined in a Bayesian framework to develop best-
informed fragility curves. Bayesian approaches are becoming more and more popular. Here, we 
present an approach that allows for the consideration of generic fragility parameters and 
simulation to develop priors and update fragility curves using experience feedback considering 
both epistemic and aleatory uncertainty. This is illustrated in figure 1. In particular, we use a 
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database that contains failure data collected in industrial plants that have experienced an 
earthquake. We discuss opportunities and difficulties of this approach, related to the lack of 
specific data for nuclear equipment despite growing experience feedback and awareness.  

 

 

 

Figure 1. Illustration of Bayesian assessment process for fragility curves. 

 

The PGA (Peak Ground Acceleration) is generally used as intensity measure when developing 
fragility and hazard curves while a few equipment might be more sensitive to low frequency 
content of seismic ground motion and thus specific Pseudo-Spectral Acceleration (PSA). This can 
be addresses by considering vector hazard and vector fragility curves, the benefits for seismic 
risk assessment of nuclear plants still needs to be quantified. Other advancements with the 
development of the PBEE approaches that could be beneficial for nuclear safety assessment a 
related to more realistic definition of seismic load. This will be discussed as a perspective of this 
work. 

 

Fragility curves 

 

Fragility curves are computed as conditional probabilities of failure of structures, or critical 
components, for given values of a seismic intensity measure (IM), such as the peak ground 
acceleration (PGA). The computation of fragility curves requires a realistic estimation of the 
structure performance subject to seismic excitations via the quantification and the propagation of 
uncertainties existing in earthquake ground motions, structural material properties, damage 
variable. 

The fragility curve is defined as the conditional failure probability of a structure, system or 

component (SSC), given the seismic load intensity . Failure is not necessarily the collapse of 
the structure. When the performance of the structure or component is described by a pertinent 
damage measure (DM), then “failure” can be expressed by means of a threshold Ds. According 
to the second definition, failure occurs when the demand exceeds a defined limit capacity. The 
most general expression of a fragility curve as a conditional probability reads: 

 𝑃𝑓(𝛼) = 𝑃(𝐷𝑀 > 𝐷𝑠|𝐼𝑀 = 𝛼)                      (1) 

In practice, the fragility curve is generally expressed as a lognormal distribution function. In this 
framework, the structural capacity is lognormally distributed with median A𝑚  and lognormal 

standard deviation (log-std) 𝛽𝐶 . This allows writing the fragility curves as the Cumulative 
Distribution Function (CDF): 
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 𝑃𝑓(𝛼) = Φ (
ln 𝛼−ln  A𝑚 

𝛽𝐶
) , (2) 

where Φ(𝑢) designs the CDF of a normalized Gaussian random variable u. The uncertainties, 

expressed by 𝛽𝐶 are categorized into two groups (Kennedy et al, 1980): aleatory uncertainties, 
which reveal the inherent randomness of variables or stochastic processes, and epistemic 
uncertainties, which originate from the lack of knowledge about the model and provide a family of 
confidence interval curves for the fragility estimation.  

Considering lognormal distributions, the log std 𝛽𝐶  can be decomposed in its aleatory and 

epistemic contributions, respectively R and U as 

  𝛽𝐶 = √𝛽𝑈
2 + 𝛽𝑅

2   (3).  

The fragility curve is then expressed as a function of confidence level Q, which represents the 
epistemic uncertainties, as follows: 

 𝑃𝑓(𝛼) = Φ (
ln(

𝛼

𝐴𝑚
)+ 𝛽𝑈 Φ−1 (𝑄)

𝛽𝑅
) (4) 

This is illustrated in Figure 1 with the mean, median and 5% and 95% confidence interval curves. 
Of course, in the case were only mean hazard and fragility curves are considered in the risk 
assessment, distinguishing epistemic and aleatory uncertainties is not useful. However, the 
distinction of the two gives a more complete picture of plant failure probabilities and acceptance 
criteria and allows to assess the impact of nuclear Improvement of prediction through the 
reduction of epistemic uncertainties  

 

Figure 1: Family of fragility curves, lognormal model 

 

The conditional probabilities can be evaluated pointwise for different IM values with the Monte 
Carlo method, as well as with methods based on the log-normal hypothesis such as currently 
used in nuclear engineering practice, see for example EPRI (1994), EPRI (2013). The 
adequateness of the lognormal model can and should be assessed by statistical tests when 
possible. In many cases, the consideration of PGA as well the assumption of lognormal prove to 
be very reasonable modelling choices (e.g. Zentner, 2016, Zentner et al, 2016, Wang et al 2018). 

The trade between statistical precision of simpler parametric model fitting and improved data 
adjustment by nonparametric empirical models is generally in favour of the lognormal assumption. 
Indeed, considering nonparametric models means more degrees of freedom and in consequence 
requires larger samples to obtain convergence to an acceptable small statistical error. 

Methods to evaluate fragility curves 

Different popular approaches to compute fragility curves include (Baker, 2015, Zentner et al 
2016): 

• Multiple stripes to evaluate conditional failure probabilities 
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• Incremental dynamic analysis (IDA, Vamvatsikos & Cornell, 2004) to estimate 
parameters of capacity distribution or evaluate conditional failure probabilities 

• Maximum likelihood approach or linear regression (known as “cloud” approach) for fitting 
parameters of the lognormal fragility curve – depending on the failure mode and damage 
variable (continuous or binary) 

• Safety factor method (EPRI 1994) 

An overview with an example application of a set of methods is given in the reference Zentner et 
al (2016). For the latter (certainly limited) case study, it could be shown that similar results are 
obtained with the different methods when applied based on the same assumptions. The choice 
of the best approach depends on envisaged application and should be guided by the kind of 
failure mode (binary or continuous damage variable), the kind of ground motion data, the available 
numerical resources and analysis framework (margin-based, advanced integrated simulation). 

Also, it is useful to keep in mind particularities that need to be faced in reliability engineering and 
risk assessments in nuclear. Firstly, as opposed to regular buildings or even other industrial 
installation, structures, systems and components (SSC) in nuclear installations are in general very 
robust and well maintained. For obvious safety reasons of NPP, there is continuous inspection 
and repair or replacement of SSCs. In consequence, relevant ground motion, likely to damage 
SSCs, corresponds to very high return periods (for example up to 100 000 years for France) which 
is why databases do generally not contain recorded ground motion for such extreme events. This 
one reason why to date, in contrast to non-nuclear structures, synthetic ground motion are often 
preferred for seismic response analysis. In addition, a large frequency range up to 30 Hz (or more) 
has to be considered for the structural analysis and numerical simulations and many equipment 
are rather stiff structures. 

 

Classification of SSCs for detailed and generic fragility assessment 

In seismic PRA (Probabilistic Risk Assessment) practice the structures, systems and components 
(SSCs) are grouped with respect to their ruggedness and their importance in risk analysis. (or 
more precisely on the event under analysis - such as Core Damage Frequency). The following 
general steps of the definition process should be performed for identification of SSCs for fragility 
analysis: 

1. Development of seismic equipment list (SEL); 
2. Screening of SSCs based on ruggedness, impact on risk estimates, seismic capacity 

(IAEA 2009) 
3. Selection of SSCs for detailed and generic fragility analysis. 

Even after screening, the seismic equipment list is usually very large. Therefore the SSC from 
SEL are further classified into two groups 

Tier 2: Generic fragility (generic parameters are proposed in EPRI 2013) 

Tier 1:  specific fragility (unique/critical items) 

A graded approach is adopted. Only for SSCs that are in the detailed fragility list, the fragility 
parameters are derived on the basis of plant and site-specific information. The approach adopted 
is the EPRI safety factor approach. Then, it can be of interest to develop more detailed simulation-
based models for a subset of the tier 1 SSCs with both significant impact on the risk estimates 
and featuring more complex structural behavior.  

In what follows, we are only dealing with the case where more detailed analysis are required or 
where simulation based site specific analysis are carried out. It is recalled that the latter constitute 
a small subset of the tier 1 specific fragility list. 
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Figure 2 Example of generic fragility parameters from EPRI (2013) 

 

Numerical simulation and metamodels to evaluate fragility curves and 
check model assumptions 

 

The numerical simulation benefits from sustained progress in numerical modelling and HPC 
capabilities. Time history analysis are becoming the state of the art for assessing the behavior of 
particular SSC under seismic loads. In addition to containment building models to compute floor 
spectra, one can cite numerical models of overhead cranes (www.Socrat-benchmark.org), piping 
or fuel assembly grids (Pellisetti et al 2021, Zentner et al 2011).  

The numerical simulation offers the opportunity to decrease biais or conservatism in the analysis 
introduced by the separation of modeling steps (such as interface between site response, 
structural response and equipment response). The separation of analysis steps instead of an 
integrated chain generally introduces additional conservatisms in the analysis chain and prevents 
from properly propagating uncertainties. 

When combined with metamodeling, the numerical simulation also offers the possibility, to 
perform sensitivity analysis and assess model assumptions such as the assumption of a 
lognormal fragility model. The artificial neural network (ANN) based metamodel implemented in 
Wang et al (2018a) proved to be a versatile and efficient approach to reduce/optimize the number 
of numerical analyses required to develop meaningful fragility curves. In this framework, the most 
relevant IMs can be selected based on a filter feature selection approach with semi-partial 
correlation coefficient. The ANN is trained with the selected IMs. Fragility curves are computed 
with both parametric (lognormal hypothesis) and non-parametric methods. The overall workflow 
is illustrated in Figure 3. 

The analysis conducted by the authors generally showed good approximations by the lognormal 
fragility model, this is illustrated in Figure 4. 
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Figure 3: Workflow for fragility evaluation through the development of ANN metamodel to 
represent the link between seismic input at free surface and floor response from Wang et al 

2018. 

 

 

Figure 4: Comparison of fragility curves calculated with direct Monte Carlo (MC) simulation 
compared to lognormal fragility curves determined by Maximum Likelihood Estimation (MLE) 

and the cloud approach (Regression). 

 

Usually, it is not obvious or even impossible to introduce all epistemic uncertainty in numerical 
models. In particular, part of the epistemic uncertainties are linked to the modeling options and 
assumptions themselves. Then, it is possible to introduce the missing part of epistemic 
uncertainty by using generic values for example from the EPRI safety factor method and 
introducing them in the fragility curves thanks to the lognormal assumptions by virtue of equation 
(3). In addition, the statistical uncertainty, arising from the finite number of numerical simulations, 
can be considered as epistemic (since reducible) and added to the final fragility curves. 
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In the framework of Bayesian updating the numerical simulation can be used to develop the prior 
model, if a sufficient number of analyses is affordable and feasible, or, in case of very complex 
and expensive numerical simulations, to inform a given prior obtained based on generic 
assumptions or simpler engineering models. This is detailed in what follows. 

 

Bayesian updating of fragility curves  

 

Methodology for updating with experience feedback data 

The Bayesian updating approach provides a perfect framework for introducing supplementary 
information in the fragility evaluations. It is possible to account for few data and to introduce 
“positive feedback” or no observation, that is an equipment has not failed during a significant 
event.  

The double log-normal fragility model distinguishing epistemic and aleatory uncertainty provides 
a natural environment to implement the Bayesian updating of fragility curves (Yamaguchi 2006, 
Wang et al 2018b). By definition, the epistemic uncertainty is due to lack of knowledge and can 
be reduced when more information or better models become available. So, it is expected that the 
𝛽𝑈 reduced while the estimation of median capacity is improved by shifting the value to the right 
or the left. 

The double lognormal model of equation (4) is obtained by introducing epistemic uncertainty to a 
simple fragility model accounting only for aleatory uncertainty:  

 𝑃𝑓(𝛼) = Φ (
ln 𝛼−ln  𝐴𝑚 

𝛽𝑅
)   (5)  

Considering now that the median structural capacity is itself a lognormal random variable with 

 �̂�𝑚 ∼ 𝐿𝑜𝑔𝑁(𝐴𝑚,  𝛽𝑈) (6) 

yields the family of fragility curves of expression (4). Then, the likelihood function, expressing the 
likelihood of observations z = (𝜶, 𝒙) given the model reads: 

 𝐿(𝒛|�̂�𝑚) =  𝐿(𝜶, 𝒙|�̂�𝑚) = ∏𝑖=1,𝑁𝑜𝑏𝑠[𝑃𝑓(𝛼𝑖)] 
𝑥𝑖

[1 − 𝑃𝑓(𝛼𝑖)] 
1−𝑥𝑖

   (7) 

Where 𝑥𝑖 is 1 in the case of failure and 0 for survival (or no damage) for a given event i with PGA 

𝛼𝑖 . The posterior estimation of the pdf is: 

 𝑓𝑝𝑜𝑠𝑡(�̂�𝑚|𝒛) ∝ 𝐿(𝒛|�̂�𝑚)𝐿𝑜𝑔𝑁(𝐴𝑚, 𝛽𝑈) (8) 

where 𝐿𝑜𝑔𝑁(𝐴𝑚, 𝛽𝑈) is the (lognormal) prior distribution of the median capacity. 

The damage data z used in this study are taken from the seismic qualification utility group (SQUG) 
database. The SQUG database (EPRI, 2016), built by the EPRI, gathers seismic experience data 
related to seismic capacity of equipment in industrial facilities (not limited to NPPs). It is expected 
that in the future new databases and more data will be available to the seismic engineering 
community so as to facilitate the implementation and increase meaningfulness of Bayesian 
updating approaches. 

One key issue in the Bayesian updating approach is the location/definition of the control point. 
Indeed, the SSCs fragility curves are developed for ground motion intensity on soil surface where 
the plant is located while the database provides ground motion intensities referring to the 
database structure. In general PGA is the intensity measure (IM) which is why we will in what 
follows only use PGA or IM. In addition, the equipment considered for fragility updating might be 
located on a different floor level than the one with observations ion the database. This is illustrated 
in Figure 4. For the target equipment under study, the finite element model for the containment 
building is available and can be used for developing transfer functions between the ground 
surface motion and floor acceleration while for the database equipment only its height is known. 

This means that we need to 
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1. Transfer the free field database PGA to the location of database equipment using the 

information on heights, this is the floor PGA used to update the target equipment 

fragility 

 𝑃𝐺𝐴𝐹𝑙𝑜𝑜𝑟 = 𝐴�̂� × 𝑃𝐺𝐴𝑑𝑏 

𝐴�̂� = 𝐴𝐹 × 𝜖𝑆𝐹 ,   𝜖𝐹𝑆~𝐿𝑜𝑔𝑁(1,  𝛽𝑆𝐹2) 

2. Transfer the floor PGA of the target equipment to free field at the studied site using the 

transfer function from the known FEM model 

The uncertainty introduced by the transformation, evaluated as 𝛽𝑡𝑟𝑎𝑛𝑠 , needs to be introduced in 
the updated fragility: 

 𝑃𝑓(𝛼) = 𝛷(
ln 𝛼−ln 𝐴𝑚

√𝛽𝑅
2+𝛽𝑡𝑟𝑎𝑛𝑠

2
)  (9) 

More details on this procedure can be found in Wang et al (2018b). A similar but simpler approach 
is also reported in EPRI (2018). 

 

 

 

Figure 4: PGA control point and equipment location (height) for (left): database building and 
equipment (right): studied building and equipment, FEM model is available for the target 

structure. 

 

Computational efficiency by updating generic or simple fragility curves with nonlinear analysis 

The Bayesian updating approach can also be used to minimize the total amount of effort required 
to develop detailed fragility curves, see for example Kwag and Gupta (2018). The rationale here 
is to take advantage of existing studies and conventional/simplified approaches and update them 
by means of a few nonlinear FE simulations, The framework requires a prior belief (e.g., fragility 
curve) that can be obtained from engineering judgment, experiences, previous studies, or 
simplified linear models. After that, a few nonlinear time history analyses are performed to update 
the prior belief and then achieve posterior fragility curves. This approach is very promising but 
not further explored her. 

 

Bayesian Updating with experience feedback – application to Karisma 
benchmark case study 

 

The results shown in this section are reported in Wang et al (2018b). We consider a hypothetic 
equipment located in the Kashiwazaki-Kariwa NPP (K-K NPP) building. This model has been 
studied extensively by several teams in the framework of the Karisma benchmark organised by 
the IAEA (2013). A numerical model has been built in code_aster opensource FEM software for 
the containment building. An artificial neural network (ANN) metamodel is built from 100 finite 
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element analyses accounting for soil-structure interaction (SSI). The inputs of the ANN are IMs 
representing the characteristics of the seismic time histories. 

The equipment of interest is a low-voltage switchgear (LVSG), a combination of electrical control 
units such as circuit breaks and relays, etc., whose function is to ensure and protect the 

performance of 480V-AC (alternative current) electrical systems. The low-voltage switchgear is 

supposed to be situated on the -1 floor and we assume that failure occurs if floor spectral 

acceleration determined as the mean over the frequency range of interest for the equipment, 

 𝑦 =
1

9.−5.
∫ 𝑆𝑎𝑓𝑙𝑜𝑜𝑟(𝑓)𝑑𝑓

9

5
  (10) 

exceeds the failure threshold 1.8g following EPRI (1991). 

The prior fragility curve parameters are determined based on the results of numerical simulations 
completed by generic values from the EPRI safety factor method to fully account for epistemic 
uncertainty (not all of the epistemic uncertainty can be represented in the numerical model). The 
numerical model of the containment is shown in Figure 5 (right) together with the overall 
configuration (left). In the simulations, the seismic record-to-record variability is considered as the 
only source of aleatory uncertainty. 

Then, damage data, collected from the in-situ observation and the database of the seismic 
qualification utility group (SQUG), are used to construct the likelihood function for the Bayesian 
updating. The LVSG damage data can be divided into two groups: one in-situ observation for K-
K NPP and 78 post-earthquake inspection data for the LVSG in the SQUG structures shown in 
Figure 6. Only one failure was reported in the SQUG database, but it was not sure whether it is 
earthquake related. This is accounted for by considering 50% confidence for the failure data, 
𝑥=0.5 and by performing sensitivity studies reported in Figure 7 (right).  

The posterior equipment capacity is evaluated by Markov chain Monte Carlo simulation and 
posterior fragility curves are, then, obtained. The prior and posterior curves are shown in Figure 
7 (left). 

 

 

 

Figure 5: KK NPP buildings configuration (left) and FEM model for RB (right) 
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Figure 6: data considered for updating Low Voltage Switchgear fragility (LVG) 

 

 

  

Figure 7: Prior, likelihood and posterior: updating of fragility parameters for case study data (left 
figures) and impact of uncertainty in observation by comparing results in x=0 (survival), 

x=1(failure) and x=0.5 (uncertain failure) (right figures) 

 

 



SECED 2023 Conference ZENTNER1 

11 

The Figure 8 shows the results of the updating with a clear decrease of epistemic uncertainty 
and refined estimation of median and HCLPF (High Confidence Low Probability of Failure) 
capacities. 

 

  

 

Figure 8: Results of the updating 

 

 

Perspectives for further developments – ground motion & opportunity for 
vector fragility 

 

The numerical simulation-based assessment of structures and their reliability also highlights new 
opportunities for improving practice in seismic risk assessment in nuclear.  

For performing best estimate plus uncertainty numerical analyses and computing fragility curves, 
not only the seismic hazard curves, the classical output of PSHA, but also time histories are 
needed. In this work spectral matching and a stochastic simulation method have been applied. In 
the recent years, there have been significant advances in the physics-based simulation of ground 
motion, in particular stochastic physics-based methods. Accompanied by adequate record 
selection procedures these could be used together with to define sets of time histories for 
engineering purposes instead of the spectral matching and scaling. Indeed, the selection of a set 
of time histories from the larger databases, in agreement with seismic hazard, constitutes the link 
between seismic hazard assessment and structural engineering. In the recent decades, there 
have been advancements with the development of the PBEE approach including a more realistic 
definition of seismic load. The conditional spectra approach, Lin et al, (2013), Baker, (2011) allows 
for the decomposition of UHS into a series of scenario spectra corresponding to distinct 
magnitude, distance (M, D) earthquake scenarios and could be applied fragility assessment of 
SSC, cf Trevlopoulos et al (2020) 

Eventually, the analysis showed that PGA performs well for multimodal and most regular stiff 
structures encountered in NPP although it might be outperformed by specific pseudo spectral 
acceleration -based IMs such as Average Spectral Acceleration (ASA, de Biasio et al, 2015) (see 
also Zentner et al 2016, Wang et al 2018, Pellisetti et al 2021a,). However, failure modes of 
particular SSCs such as dams are more correlated to low frequency PSA. Vector fragility and risk 
analysis is a tool to account for two complementary IMs such as PGA associated to low frequency 
PSA (Pellisetti et al 2021a). Recent advances in seismic hazard computations allow for the 
consideration of vector hazard (Pagani et al 2023, Zentner et al 2024). 
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Serval of these topics are currently addressed by EURATOM METIS (https://metis-h2020.eu/) 
project partners. 

Conclusion and discussion 

 

We have presented a Bayesian updating approach that allows to combine different sources of 
data and information and applied it to Karisma benchmark study: 

• Use simulation and expert data to develop « initial » prior model 

• Bayesian updating to improve estimation of median capacity and educe epistemic 
uncertainty 

• Test/observation data: Both information on failure/survival can be used 

The Bayesian updating methodology is very promising to introduce information from in-situ 
observation, given the increasing databases and shared experience feedback.  

It is very versatile and can be useful in other configurations where a prior model is available and 
more detailed but rare additional information becomes available. Such a case could be the 
development of detailed non-linear numerical models with the possibility to conduct only few 
analyses at affordable cost or new test or experience feedback data. One drawback for the 
practical implementation of the experience feedback updating is the available data. Most 
databases, including SQUG, do contain only few data from NPP equipment but mainly feature 
experience feedback from non-nuclear industrial installations. This can induce a bias in the 
estimations since, in addition to differences in the equipment, it can be expected that nuclear 
installation are much more robust and well maintained than other installations. However, it is 
expected that international databases with experience feedback from nuclear will increase in the 
coming years. 

In addition to databases and numerical capabilities, there is a constant increase in scientific 
knowledge, in the field of seismology and geophysics. The evolution of the state of the art in 
earthquake engineering, requires a continuous effort to introduce this knowledge in the seismic 
safety assessment procedures for design and periodic safety reviews. There is a need for 
comprehensive approaches and opensource tools to accelerate the transfer of approaches, that 
have achieved consensus, from research to (nuclear) engineering practice.  
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